CERT

Fuzz Testing:
Vulnerabilities and
Exploit mitigation

- Will Dormann [wd@cert.org]

=== Software Engineering Institute | CarnegieMellon © 2012 Carnegie Mellon University

NO WARRANTY

THIS MATERIAL OF CARNEGIE MELLON UNIVERSITY AND ITS SOFTWARE ENGINEERING
INSTITUTE IS FURNISHED ON AN “AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO
WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING,
BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY,
EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON
UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM
FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this presentation is not intended in any way to infringe on the rights of the
trademark holder.

This Presentation may be reproduced in its entirety, without modification, and freely distributed in written or
electronic form without requesting formal permission. Permission is required for any other use. Requests
for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

This work was created in the performance of Federal Government Contract Number FA8721-05-C-0003
with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded
research and development center. The Government of the United States has a royalty-free government-
purpose license to use, duplicate, or disclose the work, in whole or in part and in any manner, and to have
or permit others to do so, for government purposes pursuant to the copyright license under the clause at
252.227-7013.

—= - O . o
(CER‘T | === Software Engineering Institute | CarnegieMellon 2

Outline

« Vulnerability Analysis

Fuzz Testing
~ BFF

—FOE

Real-world fuzzing example

Exploitation protection
— Microsoft EMET

Future plans

—= - O . o
(CER‘T | === Software Engineering Institute | CarnegieMellon 3

_ Vulnerability Analysis at
CERT

CERT | i Software Engineering Institute | CarnegieMellon

CERT Vulnerability Analysis

Mission: Reducing the birth rate and increasing the
death rate of software vulnerabilities

Discovery Disclosure Remediation

CERT | i Software Engineering Institute | CarnegieMellon 5

Vulnerability Discovery

Software systems continue to be plagued by
security vulnerabilities caused by underlying
software defects

Goals:

« Help vendors and developers discover vulnerabillities
before software is fielded

« Reduce the cost of improving software assurance

—= - O . o
(CER‘T | === Software Engineering Institute | CarnegieMellon 6

Vulnerability Discovery

Develop and improve practical tools and techniques
to find software vulnerabilities

« Static analysis
« Dynamic analysis

— Current focus is on fuzz testing

Software security quality assurance

« Feeds back into the vulnerability remediation process

—= - O . o
(CER‘T | === Software Engineering Institute | CarnegieMellon 7

Fuzz Testing

(CER‘T | i Software Engineering Institute | CarnegieMellon 8

Fuzz Testing

Providing unexpected, invalid, or random data to an
application with the intention of finding bugs.

« Unexpected behavior

e Crashes
— Buffer overflows

— Integer overflows

— Format string

Vulnerabilities

—= - O . o
(CER‘T | === Software Engineering Institute | CarnegieMellon 9

Types of Fuzzing

Mutation ("dumb?)

« Semantics-less modification of input — “flip random bits

Generational

« Semantics-aware modifications of input — “protocol and
format aware”

Concolic — concrete and symbolic
« Using symbolic representation for code coverage

7

While the least sophisticated, CERT continues to
focus on mutation fuzzing due to a continued high

success rate

—= - O . o
(CER‘T | === Software Engineering Institute | CarnegieMellon 10

Mutation Fuzzing Challenges

Much of the research into black-box negative input
software testing (i.e., fuzz testing) has focused on
making tools more aware of the protocol or data

structure they are targeting
 Incurs high up-front costs to model input/protocol
« Easy to omit large branches of test cases

Developers require very generic fuzz testing tools
that can apply to lots of software

(CER‘T | == Software Engineering Institute | CarnegieMellon

11

Mutation Fuzzing Challenges (2)

Mutational fuzz testing produces thousands or even
millions of crashing test cases that need to be
identified
« A majority of the results are duplicates resulting from the
same underlying software defect

« Developers and researchers need a metric of

exploitability
100M 100K 100 unique 10 exploitable
lests crashers crashers crashers
b |
The Fuzzing Pipeline

Numbers shown are order-of-magnitude examples

(CER‘T | == Software Engineering Institute | CarnegieMellon 12

CERT’s Approach

Create very generic fuzz testing tools that can
apply to lots of software

Be entirely blind to context and underlying protocol

Apply core principles of fuzz testing to a broader
range of software and improve their overall efficacy

Use feedback from the cumulative performance of
a testing campaign as input to the mutation
algorithm and seed file selection

—= - O . o
(CER‘T | === Software Engineering Institute | CarnegieMellon 13

Fuzzing Basics

1. Mangle input (mutate or generate)

1. Choose input file to mangle
2. Decide how much to mangle it

Run target application

Detect exceptions (did it crash?)

Filter out non-unique crashes (is it new?)
Triage severity (how exploitable is it?)

a > W b

(CER‘T | == Software Engineering Institute | CarnegieMellon

14

Fuzzing on Linux and OS X:
The CERT BFF

CERT | i Software Engineering Institute | CarnegieMellon

Fuzz Testing

Problem:

Fuzzing isn’t rocket science, but it does require work
to set up a fuzzing environment.

Solution:
The CERT® BFF
https://www.cert.org/vuls/discovery/bff.html

—— - . O o
(CER‘T | === Software Engineering Institute | CarnegieMellon 16

\
‘

Basic Fuzzing Framework

* It's not you, it's me

CERT | i Software Engineering Institute | CarnegieMellon 17

BFF Components

Debian Linux virtual machine (VMware)
« Optimized for fuzzing
« zzuf, valgrind, gdb
« Software watchdog

Fuzzing scripts

« Testcase generation
Process Killer

Crash verification
Crash deduplication
Crash minimization

(CER‘T | == Software Engineering Institute | CarnegieMellon

18

BFF Architecture

Perform multiple levels of results reduction

Normalize results and remove duplicates
Minimize crashing input to the minimum bytes to reproduce the crash

Sort final unique results by exploitability and
clusters of crashes — “hot spots”

seed files - recycle minimized crashers as seedfiles

exploitability

analysis
. . : unigue P minimized
fuzzer [#| crashers [uniquer]—» crashers [minimizer]—s crashers
ll
*— minimizer finds other crashers [
other

fuzzing analysis
strategies
—_—

crasher data

exploitable
crashers

—— - o O o
(CER‘T | === Software Engineering Institute | CarnegieMellon 19

BFF Requirements

Prerequisites:
 Ability to unzip a file
« Ability to power on a VMware virtual machine

(CER‘T | == Software Engineering Institute | CarnegieMellon 20

BFF on OS X

® 00 |_| CERT BEF
1: Double-click 2: Run BFF from
and run the the Applications
installer below: folder:
Install CERT BFF.pkg Applications

CERT

Software Engineering Institute
Carnegie Mellon.

||\|||||\||

. CERT BFF

(CER‘T | i Software Engineering Institute | CarnegieMellon

21

Flash Fuzzing VM

B udewd-desktop:

1;2Z 15 \ 0 1
Pluorkspace 15 18 Feb, Wed 89:29:22 EFFY ud@ud-desktop: ~ " top

—= - O . o
(CER‘T | === Software Engineering Institute | CarnegieMellon 22

Fuzz Testing Variables and
4 Solutions

CERT | i Software Engineering Institute | CarnegieMellon 23

Fuzzing Variables

Fuzzing effectiveness depends on many variables:

« Fuzzer
« Mutation strategy

- Seed File
- Program used to generate

- Options used for generation

. Size

=== Software Engineering Institute | CarnegieMellon 24
CERT ' = eg

Seed file selection

Some input files reveal more unique crashes under
fuzzing than others

« Different files induce different code coverage

Obijective: Focus attention on the files that are more
productive

=== Software Engineering Institute | CarnegieMellon 25
CERT ' = eg

Seed file selection method

Model fuzzing as Bernoulli trials and unique crashes as
Poisson-distributed random events

For each seed file, maintain a confidence interval on the
expected crash density based on empirical measurement
during the course of a fuzz campaign

Choose seed files with likelihood in proportion to their
expected crash density

Result: Seed files that yield more crashes get more attention

Paper to be submitted to ISSTA-2012

(CER‘T | == Software Engineering Institute | CarnegieMellon 26

How much to mangle?

Too much:

« ‘breaks the file’ 2 missing code coverage
« Some bugs won'’t be found

Too little:

« Results take too long
« Some bugs won'’t be found

(CER‘T | == Software Engineering Institute | CarnegieMellon 27

Solution: Rangefinder

Segment proportion of file to be fuzzed into ranges
« fuzz 1 bit all the way up to ~100% of the bits
« range widths grow exponentially

Prefer higher granularity at lower proportion of
mangled bits

Each unique crash encountered increases range
score

Pick next range based on probability distribution
derived from the range’s score

—= - O . o
(CER‘T | === Software Engineering Institute | CarnegieMellon 28

Number of Bits Fuzzed

Avg Bits Fuzzed by Range

1,000,000

Ranges are
exponentially sized

100,000

10,000 -

1,000 -

(1.0,1.6,2.6,4.2, 6.9,
11.1,17.9, ..))

Exponential range

sizes give us higher
el Each range starts out
i ETRE SR (T with equal probability, so
the fuzzing naturally
skews towards lower
number of bits fuzzed.

Range selection probabilities adjust
dynamically once we start finding crashers

T T T T T T T 1

T T T T T T T T T

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Range number

ware Engineering Institute | Car

Engine

29

Successful ranges
should get more

attention...
0.4 T
pe
O
O
g 03 T
E
0.2 -
0.1
A=
~) 20
- 10 15
1) . 10{\ ange
...but don't lock in g 5 R

too quickly

(CER‘T | % Software Engineering Institute | CarnegieMellon 30

Problem: Volume of crashing test cases

File fuzzing can yield a large number of crashing test
cases

Improvements to BFF have dramatically increased
the number of crashes available for analysis

« BFF run on widely-used open-source J2K codec yielded
111 unique crashers in a few days

Our capacity to find crashes outstrips our ability to
analyze them using traditional human-oriented

techniques

—= - O . o
(CER‘T | === Software Engineering Institute | CarnegieMellon 31

Where to start?

@Qv‘ . » Libraries » Documents » Virtual Machines » shared » DebianFuzz-2. jgifagticbug » results » crashers » ‘4,H Search crashers ,O‘
File Edit View Tools Help
Organize v Share with v New folder =+ 0
“‘;a;::i::p Egi:ments Ilbrary Arrange by: Folder ¥
‘J’ Downloads Name Date modified Type Size =
| Recent Places
jmfoote J 0a7608db3723bbfc2adca2df2645367F 10/26/201110:38 ... File folder
M . 0b8050716281203b991083293d9fa8f0 File folder
) 0df3ch2eddd2b2c0c8lecf348c0a3561 File folder
By Libraries J 01d4cd52d5beed?051c784707893765a File fo =
DiDocuments . 1b43e5b23ff3573242981867b3462a3c File
rJ’ Music 0 1e08cal7cf6832f7772777c0303a30f5 File folder
&) Pictures J 1fl6dee61a8633e46d280699de146dbd File folder
B Videos | 2f4aSbeTed3f6edf79e31eab9c563f03 File folder
| 2f4188612680b7c60clc31edcabdblal File folder
18 Computer J 3c1403d228e5abel04d13e2e5e7e7949 File f
& os(c) 3d673a7a328951d1e 400162090039 2f File folder
. RAID (B3 J 3daal745c3becl0479d2bb919547a8e2 File folder
o Removable Disk (F:)) 3f6d048c3390dfSh5f9346efee0ddTel File fo
. 4c4003be06f3a34626282dc416108f62 File folder
€ Network J 4d35fa99c05c3bY6eeet1bI32d708bT1 File f
J 5cdald305d63790ffd0b6b3e01ded3ff File folder
J 5dal6dat93927199f2e7946482cd4fed File folder
J 06db62felal91ddb298a8fle9a5c7491
. 06f47af1bbead8440838d7056bd1578 File folder
J 6ab9378ffalab2739%ee33b9c027d8f0b File folder
) 6c9194b0793a334d55cfdae3644872943 File folder
J 8b55bcadfiafleelebb252fa2dSdifdc File folder
| 8f28da83550854de65e9cabl58dbblec File er
. 1232044760f925930187b2c14c829c8d File folder
. 12d5c1d4f335b7cfabf34f0154afb1fd File folder
) 13ad7c7dcf4274d0cfff81d91f32e8a2 File folder
. 14ad75f18ed45e1d261d2f441e68d9f8 File folder
J 15ed75ab9d053163c7348e2e5a894eab File er
. 16a61d9357529d3f565c2ca5984cbala File folder
. 18ab937378bf1edb2f607d5b4e8b1553 10/ 0 . File folder
25d7e3fheTNeTRfrdd42rfT4haR5NNA4 INA2R42011 1038 ... File falder %
111 items

CERT | i Software Engineering Institute | CarnegieMellon

32

Solution: lightweight automated analysis

Perform a quick automated analysis to find test cases
that present security vulnerabilities

For each test case

1. Run crashing test case under a debugger
2. Examine application state
3. Determine “exploitability”

=== Software Engineering Institute | CarnegieMellon 33
CERT ' = eg

Existing solutions for Windows and OSX

Windows

« WinDbg + MSEC !exploitable extension
« Used by CERT FOE

OSX

« Apple CrashWrangler
« Used by CERT BFF on OSX

Linux

« Couldn’t find anything that does this exactly
« Valgrind memcheck, (rumored) private debuggers

(CER‘T | == Software Engineering Institute | CarnegieMellon 34

Solution for Linux: CERT triage tools

“exploitable” extension for GDB

« GDB is the most widely available debugger for Linux

« Implemented on nascent GDB Python API available in
versions > 7.1

« Determines exploitability of a single test case

“triage” example batch script

« Python script that wraps multiple calls to GDB +
exploitable

« Determines exploitability of a corpus of crashing test
cases

(CER‘T | == Software Engineering Institute | CarnegieMellon

35

“exploitable” output

rogram received signa . vegmentation

memcpy () at ../sysdeps/i386/ib686/memcpy.S:75

75 . ./sysdeps/i386/i686/memcpy.S: No such file or direct
ory.

in ../sysdeps/i3867/i686/memcpy.S
(gdb) source exploitable.py
(gdb) exploitable
Description: Possible stack corruption
Short description: PossibleStackCorruption (6/20)

Hash: dcb64d/713bleb2f213638e3aa329f2/7/fa.dcb64d/713bleb2f213638e3

aa329f2/7fa

Exploitability Classification: EXPLOLTABLE

Explanation: GDB generated an error while unwinding the stack
and/or the stack contained return addresses that were not ma
pped in the inferior’'s process address space and/or the stack
pointer is pointing to a location outside the default stack
region. These conditions likely indicate stack corruption. wh
ich is generally considered exploitable.

Other tags: BlockMoveflv (13/720), SourcefAv (15/20)
(gdb) |}

CERT | == Software Engineering Institute | CarnegieMellon 36

“triage” output

1
1
1
1
1
1
1
1
1
1
1
1
1
1

—— - O - o
(CER‘T | === Software Engineering Institute | CarnegieMellon

37

Test case minimization

Why minimize?
« Fuzzed test cases can significantly alter the code
coverage through the executable

« Many of those differences may not be relevant to the
crash

Goal: Find the test case that
(1) is minimally different from the known good seed file

2) still causes the same crash
= ‘same crash’ = match the last N entries in back trace

(we typically choose N=5)

=== Software Engineering Institute | CarnegieMellon 38
CERT ' = eg

Steps to a solution

Figure out how much to attempt to revert based on
what we know (or can guess)

Test to see if we still see the same crash

lterate and update strategy based on what we learn

(CER‘T | == Software Engineering Institute | CarnegieMellon

39

What Minimizer Does

Known good seedfile — d0eS not cause crash

Fuzzed file — CAUSES crash, many changed bytes are not involved in the crash

Minimized fuzzed file — CaUSE€S same crash, all changed bytes are involved in the crash

GE}T | i Software Engineering Institute | Carnegie Mellon 40

1600

1400

1200

1000

800

600

Bitwise Hamming Distance

400

200

Cerd | B

Crash Minimization

start_hd

— min_found
— target_guess
—— current_try

The minimizer attempts to
maximize the number of bits it
reverts (current try) based on

what it has learned (target guess)
about the target it is trying to hit.

Eventually the minimum
found matches our target
guess and we’re done.

500

1000

1500 2000 2500

41

Minimize to string

Standard minimization gives the minimally-different-
from-seed-file test case. But which of those bytes are
irrelevant to the crash?

We want to know:

« Bytes required for processing (Structure)
« Bytes required to trigger crash (Vulnerability)

=== Software Engineering Institute | CarnegieMellon 42
CERT ' = eg

_originalbyte
What Minimize-to-String Does

Known good seedfile — dO€s not cause crash

Fuzzed file — causes crash, many changed bytes are not involved in the crash

Minimized-to-string file — CAUSES same crash, replaces non-structure bytes

OO 0 O 0 0 10 0 W Cinsert shelicodie here T I

GE}T | i Software Engineering Institute | Carnegie Mellon 43

Minimize to string example

ffee
ffdb «

Ob0a

01

0501 010

—— - O - o
(CER‘T | === Software Engineering Institute | CarnegieMellon

':‘mloooooooo

leQQQQQQQQQQQQQQ

LR 2 O

L

+e
000000$$.I$$5j:j

LR
-
PR R R R R R R Ry

+* e LR R R O

st rrrrrrer e

44

Minimize to string downside

It's @ more complex problem to solve.
It's slow!

Mitigation:
Only run it for cases that you want to write a PoC for.

=== Software Engineering Institute | CarnegieMellon 45
CERT ' = eg

Writing a PoC

Achieving code execution with a memory corruption
vulnerability requires two pieces of knowledge:

1. What bytes are under my control?
2. How do | get there?

(CER‘T | == Software Engineering Institute | CarnegieMellon

46

The original crash

“. Immunity Debugger

File View Debug Plugins ImmLib Options Window Help Jobs

O T X P I b¥H* 1l emtwhcPkbzr..
CPU - main thread

ntdll.7C

@(FFFFFFFF)
(FFFFFFFF)
3(FFFFFFFF)
@(FFFFFFFF)
7FFOFB2a(FFF)

[18:33:45] Access violation when executing [696600081 — use Shift+F?/F8/F% to pa| |Paused

U W 10:33 AM

(CER‘T | == Software Engineering Institute | CarnegieMellon

47

The minimized-to-string crash

“. Immunity Debugger - ase.exe @

File View Debug Plugins ImmLib Options Window Help Jobs

OB TE WX P I M EH Y lemtwhcPkbzr.s ? BTN

(& CPU - main thread, module vsgdsf

0334?448 : MOV BYTE PTR [EDI+EBX], AL
HDD EDI, 1
CHMP EDI EEF
SHO

f.B3B4744E
@(FFFFFFFF)

&(FFFFFFFF)
7FFOF@8@(FFF)

E handl

[18

w
1.8
1.3
0
el
D
(1)
o
1)
“
“
<
-
-]
e
¥
ot
™
Q
2
<
=
1]
=
=
*
™
ot
™
=2
=
ot
Q
[
®
N
[ard
~J
[\
=
=
®
el

— use Shift+F?/F8/F% to pl lPaused

& Immunity D B ©0 % W 10:35aM

—— - O - o
(CER‘T | === Software Engineering Institute | Carnegie Mellon

Which 0x78787878 ?

Minimization to x shows:

Which bytes are under my control ("xxxx...")
How to get there (JMP ECX)

The problem:
Which ‘X’ is which?

The solution:
Metasploit string pattern.

(CER‘T | == Software Engineering Institute | CarnegieMellon

49

The minimized-to-Metasploit crash

“. Immunity Debugger - ase.exe @

File View Debug Plugins ImmLib Options Window Help Jobs

% TE X b Il b ; lemtwh cPkobzr.s?HTTrrm

CPU - main thread, module vsgdsf

B3B4 744! ; Moy BYTE PTR CEDI+EBX], AL
7 AOD EDI, 1
CMP EDI,EBP
SHORT wvwsadsf.B3B47

&(FFFFFFFF)
7FFOF@8@(FFF)

E handl

3 00 €

at=""fast
updatein
fo' .

W

Trace into (Ctrl+F11) | |Paused

A Immunity D S0 % W o10:37 M

—— - O - o
(CER‘T | === Software Engineering Institute | Carnegie Mellon

50

The minimized-to-Metasploit crash

“. Immunity Debugger -

File View Debug Plugins ImmLib Options Window Help Jobs
OB TE x> I WY 1 emtwhcPkbz . s ? D
CPU - main thread

@(FFFFFFFF)
3(FFFFFFFF)

&(FFFFFFFF)
7FFOF@8@(FFF)

8 A
R

ETURN

W

[18:37:36] Access violation when executing [463673461 — use Shift+F?/F8/F9 to pa| |Paused

4. Immunity D U W 10:38 AM

(CER‘T | == Software Engineering Institute | CarnegieMellon 51

Fuzzing on Windows:
The CERT FOE

CERT | i Software Engineering Institute | CarnegieMellon

Enter the FOE

Failure Observation Engine (FOE)

https://www.cert.org/vuls/discovery/foe.html
« Windows-compatible
* Functional decomposition of BFF (and zzuf)
« Python (and a bit of C)

« Easyto use
1. Pick seed files to mutate

2. Enter target app command line

3. Go!

—— - . O o
(CER‘T | === Software Engineering Institute | CarnegieMellon 53

Exception Detection

Debuggers
« Slow (sometimes)
« Foiled by anti-RE tricks
 Heisenbugs
Exception handler hooks

« Fast
« Less likely for anti-RE to detect
* Not very informative (yet)

=== Software Engineering Institute | CarnegieMellon 54
CERT ' = eg

Exception Detection - Hook

KiUserExceptionDispatcher()

« Called in userland before process exception handling

Installation

1. Use Applnit_DLLs registry value to load hook DLL

2. Overwrite first few instructions to jmp to our trampoline
code

Trampoline: Do we care about the exception?

« Yes: Kill the process (group) with the exception code
« No: Pass exception to target application

(CER‘T | == Software Engineering Institute | CarnegieMellon 55

Uniqueness Determination

MS lexploitable debugger extension
 http://msecdbg.codeplex.com/

lexploitable hash

« Based on current instruction pointer, other state
 Form: Major.Minor
o E.g. 0x2472222b.0x134c461c

Cannot unique true heisenbugs

=== Software Engineering Institute | CarnegieMellon 56
CERT ' = eg

Exploitability

lexploitable “Exploitability Classification”

« Based on exception type and properties

— Read A/V on eax near NULL =
PROBABLY_NOT EXPLOITABLE

— Write A/V not near NULL = PROBABLY_EXPLOITABLE

— Read A/V on instruction pointer not near NULL =
EXPLOITABLE

« Assumes all inputs to faulting instruction are attacker
controlled (tainted)

« Errs on false positive side

(CER‘T | == Software Engineering Institute | CarnegieMellon

57

Interesting crashes

Problem: Even with !exploitable crash categorization,
you may have too many results to sift through.

Solution: drillresults.py

« Select interesting exceptions
« Look for byte patterns that match fuzzed file
« Rank interesting crashes

(CER‘T | == Software Engineering Institute | CarnegieMellon 58

drillresults.py output

0x1c636361.0x1a2£f7629 - Exploitability rank: 10
Fuzzed file: results\oi-multi-2\PROBABLY EXPLOITABLE
\0x1c636361.0x1a2f7629\sf 7£d23297537035d4d1ed899c4838d862.1wp

exception 0: TaintedDataControlsCodeFlow accessing 0x00080800 *** Byte pattern is in fuzzed file!
* k%

\1lwpapin.dll

0x607£0d37.0x510£346f - Exploitability rank: 20

Fuzzed file: results\oi-multi-2\EXPLOITABLE\O0x607f0d37.0x510f346f

\sf_ 1903537138d91£0dadd9511d3b7522ed.cdr

exception 0: WriteAV accessing 0x00130000 *** Byte pattern is in fuzzed file! ***
00c97be7 880417 mov byte ptr [edi+edx], al ds:0023:00130000=41

Code executing in: C:\l-ix\redist\vsgdsf.dll

exception 1: ReadAVonIP accessing 0x00003£ff0 *** Byte pattern is in fuzzed file! ***
00003f£0 ?7 2?7

Instruction pointer is not in a loaded module!

0x0b535856.0x02751235 - Exploitability rank: 30
Fuzzed file: results\oi 8.3.7.77-noefa\PROBABLY EXPLOITABLE
\0x0b535856.0x02751235\sf 4a4baf4£7167552d1144a9fefa29f9bf-69152-0x00000000.sxd

exception 0: TaintedDataControlsCodeFlow accessing 0x00000000 *** Byte pattern is in fuzzed file!
* %k %

0140c574 8bll mov edx,dword ptr [ecx] ds:0023:00000000=?7?7?2??7?7?7
Code executing in: C:\l-ix\redist\DEVECT.DLL

—= - O . o
(CER‘T | === Software Engineering Institute | CarnegieMellon 59

The CERT® FOE

CIEX

Welcome to the FOE Setup Wizard

This wizard will quide you through the installation of FOE.

1t is recommended that you close all other applications
before starting Setup. This will make it possible to update
relevant system files without having to reboot your
computer,

Click Next to continue.

[Next >] [Cancel

is Start ® FoE

<CER‘T | i Software Engineering Institute | Carnegie Mellon

O % % @) 11:38 AM

60

The CERT® FOE

®

r\ie.tif).
:\Program Files\ImageMagick-5.5.7-Q16\convert.exe:

Cannot handle different per—

sample values for field "BitsPerSample'. (C:\Program Files\foe\fuzzdir\ie.tif).

C:\Program Files\ImageMagick-5.5.7-Q16\convert.exe:

Not a TIFF file, bad magic n

FOE-setup.exe umber 16713 (Bx4149>. (C:\Program Files\foe\fuzzdir\ie.tif).

C:\Program Files\ImageMagick-5.5.7-Q16\convert.exe: unknown field with tag 19986
(Bx4e12)> ignored. (C:\Program Files\foe\fuzzdir\ie.tif).

C:\Program Files\ImageMagick-5.5.7-Q16\convert.exe: Unabhle to open file (C:\Prog

ram Files\foe\fuzzdir\ie.tif).
:\Program Files\ImageMagick-5.5.7-Q16\convert.exe: unknown field with tag 48722
(Bx2£f12> ignored. (C:\Program Files\foe\fuzzdir\ie.tif).

unigque crash on seed 62: Bx@16d6a?71.6xB4111a5¢c

Exploitability: PROBABLY_NOT_EXPLOITABLE Faulting Address: Bx687330

Attempting to minimize crash(es) [BxP16d6a?1.08xB4111a5c]

start: [135] min: [135] curr: [62] chance = [0.49630]1 miss: [B / 18] target_gues

s: [1]1 total miss: [B ~/ 11 unigcrashes:

start: [135]1 mi
: [1]1 total mi
start:

start:
[1] total miss

[1]1 total miss:

[a1
[62]1 curr: [27] chance = [B.5808081 miss: [B ~/ 18] target_guess
21 unigcrashes: [11]
curr: [15] chance = [B.481481 miss: [B ~/ 18] target_guess
31 unigcrashes:
curr: [81 chance = [B.533331 miss: [B ~/ 111 target_guess:
[B / 41 unigcrashes: [11]

start: [135]1 min: [8]1 curr: [3]1 chance = [B.500088]1 miss: [B ~/ 18] target_guess:
[B / 5] unigcrashes: 1

< ? /,-) Search | Folders v

) C:\Program Files\FOE\crashersiconvert v5.5.7

File and Folder Tasks A

— Text Document

~ oy
";’” state.txt
— 1KB

7 Make a new folder

&) Publish this folder to (=
the Web /} PROBABLY_MNOT_EXPLOITABLE
|

kd Share this folder

Other Places

\fj crashers
\D My Documents
[Shared Documents

winhook.cfg
CFG File
4 KB

uniquelog.txt
Text Document
1 KB

[& convert vs.5.7 o< CAWINDOWSsyste...

(CER‘T | i Software Engineering Institute | CarnegieMellon

;J My Computer

| S Bs
| O % % @ 11:41 M
i

61

Microsoft SDL

Verification

Training

Requirements Design Implementation
o Attack surface
analysis

e Threat modeling

Core training o Define quality

gates/bug bar

e Analyze security
and privacy risk

e Specify tools

e Enforce banned
functions

e Static analysis

e Dynamic/Fuzz
testing

® verity tnreat
models/attack
surface

Release

® Response plan

e Final security
review

e Release archive

e Response
execution

The Microsoft SDL recommends Fuzz testing.

GE}T | i Software Engineering Institute | Carnegie Mellon

62

Microsoft MiniFuzz

® MiniFuzz

Target

Process to fuzz:

Command line args:

Shutdown method:
Settings

Template files:
Temporary files:
Log files:

Crash files:

Agaressiveness:

Start Fuzzing

Progress
Fuzzedfiles: 0

Allow process to run for:

| |

%1 |
20 3] secs.
’ Thread Injection v Shutdown delay: (0.5 3| copq A

[C:\D ocuments and Settings\test_user\Desktopminifuzzitemplate]

C:\Documents and Settingsitest_user\Desktopiminifuzz\temp'

C:\Documents and Settingstest_user\Desktopiminifuzzilogs'

C:\Documents and Settingsitest_user\Desktopiminifuzz\crashes'

J Low [5%) Always on Top

[viewLogDir | [TFS Settings... | [Help | [Abou |

Failures: 0

Time

File Crash

(CER‘T | i Software Engineering Institute | CarnegieMellon

63

MiniFuzz vs. FOE

~1 day of Fuzzing Oracle Outside In

Unique Crashes

Seconds until first

crash
MiniFuzz 1 74520
FOE 59 60
FOE 2.0 99 3

(CER‘T | == Software Engineering Institute | CarnegieMellon

64

CERT | i Software Engineering Institute | CarnegieMellon

The Target

Oracle Outside In

« Decodes over 500 different file types
— Large attack surface

« Used by a variety of applications
— Oracle Fusion Middleware

— Novell Groupwise

— Microsoft Exchange

— Guidance Encase Forensics
— AccessData FTK

— Paraben Device Seizure

(CER‘T | == Software Engineering Institute | CarnegieMellon

66

Fuzzing results

Unique crashes found through 30 hours of fuzzing
with FOE:

« 24 EXPLOITABLE

40 PROBABLY_EXPLOITABLE

67 UNKNOWN

10 PROBABLY_NOT_EXPLOITABLE

141 Total unique crashes

CERT | i Software Engineering Institute | CarnegieMellon 67

Exploiting vulnerabilities

Get control of Instruction Pointer (EIP)

o Control of EIP == Control of execution

« Point EIP to attacker’s code (shellcode) : attacker’s code
executes

=== Software Engineering Institute | CarnegieMellon 68
CERT ' = eg

Exploiting vulnerabilities

Memory layout:

Application code

(.| Calculater = |)
. View Edit Help
%)
Loaded Document _
| mc || MR || ms || me || M- |
Shellcode
—| el e e o)
EA KR ER (A ESN
L4 || 5| 6 |[*||v=]
]
Lo |- |lxd

(CER‘T | i Software Engineering Institute | CarnegieMellon

69

An interesting bug

Eight hours into the fuzzing run, in the Lotus 123 v.6
file parser (vswk6.dll):

Exception Faulting Address: 0x284c584e
First Chance Exception Type: STATUS ACCESS VIOLATION (0xC0000005)

Exception Sub-Type: Read Access Violation
Description: Read Access Violation at the Instruction Pointer

Short Description: ReadAVonIP
Exploitability Classification: EXPLOITABLE

(CER‘T | == Software Engineering Institute | CarnegieMellon

70

Proof-of-Concept Exploit

Irnrnunity
Deblager

FOESCLUERE D
R T D0y

“ri:m: ” =
av/ aﬂ(’
EnCase Shortcut to

WM702.02 festiCase

™

EMET 2.1

@T | == software Engineering Institute | CarnegieMellon 71

(CER‘T | i Software Engineering Institute | CarnegieMellon 72

Protection #1: DEP

Data Execution Prevention

« Do not execute memory locations that do not have
execute permissions

« Requires processor support: NX bit
« Applications must opt-in

(CER‘T | == Software Engineering Institute | CarnegieMellon 73

DEP Protection

Memory layout:

(executable)

Loaded Document _

Shellcode —

(not executable) -

DEP Violation
Program Terminated

DEP: ON

CERT | i Software Engineering Institute | CarnegieMellon 74

Time to go home!

——
(CER‘T | === Software Engineering Institute | CarnegieMellon

75

Return Oriented Programming

Use pieces of existing executable code to accomplish
your goal of bypassing DEP. Several techniques can
be used, including:

e Turn off DEP

« Mark memory as executable

« Allocate new executable memory

« Copy shellcode to executable memory

Outcome: Executable shellcode

(CER‘T | == Software Engineering Institute | CarnegieMellon 76

Exploiting vulnerabilities

Application code {
(executable)

Turn Off DEP —_

(executable)

Loaded Document _

Shellcode —

(not executable)

(.CER‘T | &= Software Engineering Institute | CarnegieMellon

—

Memory layout:

B

.| Calculator o B [

View Edit Help

%)

‘ MC H r‘~'1R H MS H r‘h‘l‘ H r‘~'1- ‘

L=l fl e]l =l v]

R4 KN ER AR

L4)15 J[6 |2 flas]

][

2
-

1] 2

Lo |- Ji+]

-

77

Protection #2: ASLR

Address Space Layout Randomization

 Executable modules loaded at randomized location
« Breaks ROP

(CER‘T | i Software Engineering Institute | CarnegieMellon 78

Exploiting vulnerabilities

Turn Off DEP —_

(executable)

Application code
Application code
executable
executable

Turn Off DEP —_

(executable)

Loaded Document _—_

Lo28N98 8 ment
(not executable)
Shellcode

(not executable)

Memory layout:

Invalid Instruction
Program terminated

DEP: ON
ASLR: ON

CERT | i Software Engineering Institute | CarnegieMellon 79

Exploit Mitigation

DEP and full ASLR together help prevent exploitation
of vulnerabilities.

« DEP without ASLR is not effective
— Vista or later is required for ASLR

« ASLR without DEP is not effective
« Every loaded module needs to opt in to ASLR

—— - o O o
(CER‘T | === Software Engineering Institute | CarnegieMellon 80

Exploit Mitigation Report Card

Default software installation

DEP ASLR Exploit Mitigation?
Encase 6 No + No = No
Encase 7 No* + No = No
FTK 3.3 Yes + No = No
FTK 3.4 Yes + No = No
Device No + No = No

Seizure

* DEP Enabled on Vista or later

—a—
CERT | === Software Engineering Institute | CarnegieMellon 81

Everybody Fails

£ Ras B iy

282

:' L o e Ay
. . ke

.CEQ | i Software Engineering Institute | CarnegieMellon

82

Vulnerability Exploit protection

What do we know about vulnerability protection?

« Vendors don't always opt in to exploit mitigations

« Vendors don’t fix known vulnerabilities in a timely
manner

« We want protection from unknown vulnerabilities

(CER‘T | == Software Engineering Institute | CarnegieMellon

83

Microsoft EMET

Don’t be at the mercy of your software vendors.
Microsoft Enhanced Mitigation Experience Toolkit can

force-enable:

« DEP
« ASLR (Vista and newer)

« SEHOP
« Additional exploit mitigations

http://support.microsoft.com/kb/2458544

(CER‘T | == Software Engineering Institute | CarnegieMellon 84

Microsoft EMET

File
Mitigations

m[Memory][ROP][Other]

App Name DEP
EnCase.exe

BottomUpASLR MandatoryASLR | HeapSpray NullPage

Add][Remove

@T | == software Engineering Institute | CarnegieMellon

85

Exploit Mitigation Report Card

Configured with EMET

DEP ASLR* Exploit
Mitigation?
Encase 6 Yes + Yes = Yes
Encase 7 Yes + Yes = Yes
FTK 3.3 Yes + Yes = Yes
FTK 3.4 Yes + Yes = Yes
Device Yes + Yes = Yes

Seizure

* ASLR Enabled on Vista or later

=== Software Engineering Institute | CarnegieMellon 86
CERT ' = eg

Everyone’s a winner!

A WINMER IS5 YOU

(-CER‘T | == Software Engineering Institute | CarnegieMellon

87

ASLR Requires Vista or Newer

Microsoft

Wlno

(CER‘T | i Software Engineering Institute | Carnegie Mellon

ROP Mitigations

EMET 3.5 introduces explicit ROP mitigations

p
@Application Configuration o - ||ﬁ|
File
Mitigations
|H" Memory || ROP || Other |
App Name LoadLib MemProt Caller SimExecFlow StackPivot
EnCase.exe] [[] |
[Add] [Remove J
OK] ‘ Cancel |

(CER‘T | i Software Engineering Institute | CarnegieMellon

89

EMET Without ROP Mitigations

Recycle Bin Process
xplorer

a1

2] 2]
Irnrnunity EMET 3.5
Debugger (Tech Preview)

2
Cyawin

En P
2] \'74
EnCase
v7.02,02

4 start) T | WECe ¥ R 10:15aM

GE}T | i Software Engineering Institute | Carnegie Mellon 90

EMET With ROP Mitigations

Irnrnunity EMET 3.5
Debugger (Tech Preview)

2
Cyawin

En P
2] \'74
EnCase
v7.02,02

4 start) T | WEC® Y W 10:14 M

GE}T | i Software Engineering Institute | Carnegie Mellon 91

Use EMET to stay safe

The way to more safely run applications on Windows
Is to use EMET!

Minimize risk of delayed patching
Protect against known vulnerabilities
Protect against Oday vulnerabilities
Protect against future vulnerabilities

EMET 3.5 ROP protection buys time for migration off of
Windows XP

(CER‘T | == Software Engineering Institute | CarnegieMellon 92

CERT | i Software Engineering Institute | CarnegieMellon 93

BFF Victims Successes

Crashes with evidence of exploitability:

* Apple Mac OSX

» Adobe Reader

» Adobe Flash

» Foxit Reader

« Xpdf / Evince / Poppler
* ImageMagick

« JasPer

* Clamav

« Swfdump

* File

(CER‘T | == Software Engineering Institute | CarnegieMellon

* Microsoft / Intel Indeo codec
 VMware vmnc codec

* Apple QuickTime

* Apple Preview

* Microsoft Office

* OpenOffice

* openjpeg

» ffmpeg (mplayer, VLC,
ffdshow, etc.)

94

FOE Victims Successes

Crashes with evidence of exploitability:

 Adobe Reader

* Adobe Flash

 Adobe Shockwave

* Foxit Reader

« SumatraPDF
 LibreOffice

* |lceni Argus

* Microsoft Paint

* Microsoft Picture and Fax
Viewer

(CER‘T | == Software Engineering Institute | CarnegieMellon

* Microsoft Office

* Microsoft Windows

* Oracle OpenOffice

* Oracle Outside In

* Autonomy Keyview

* RealNetworks RealPlayer
* Winamp

« Java

» ffdshow

* Google Chrome

95

Lessons Learned

Throughput is king
e Minimize I/O

« CPU-bound
* Increase code coverage

Techniques:
« Web browser JavaScript that closes browser
e Print to Null printer
e Output to /dev/null
« Export / convert file

=== Software Engineering Institute | CarnegieMellon 96
CERT ' = eg

Lessons Learned

Everything is broken

« Dumb fuzzing shouldn’t be so effective

Defense in depth:

« Runtime mitigations
« Compile-time mitigations
« Continuous fuzzing

=== Software Engineering Institute | CarnegieMellon 97
CERT ' = eg

Fuzzing Obstacles

GUI applications

« When is it “done” ?

Crashes vs. vuls
« More crashes

Can we handle all of the output?

—— - O - o
(CER‘T | === Software Engineering Institute | CarnegieMellon

98

Future Plans

Planned improvements for the BFF and related
projects:

« Code coverage awareness

« Distributed fuzzing

« Improved crash triage and exploitability

« Multiple mutation strategies

« Brute-force determination of bytes that affect the faulting
address

« Optimized pattern for cycling through bytes (inverse Gray

code)

(CER‘T | == Software Engineering Institute | CarnegieMellon

99

For More Information

Visit CERT® web sites:
http://www.cert.org/vuls/discovery/
http://www.cert.org/blogs/certcc/
https://www.cert.org/vuls/discovery/bff.html
https://www.cert.org/vuls/discovery/foe.html

Contact Presenter

Will Dormann
wd@cert.org
(412) 268-8922

Contact CERT:
Software Engineering Institute

Carnegie Mellon University
4500 Fifth Avenue
Pittsburgh PA 15213-3890

(CER‘T | % Software Engineering Institute | CarnegieMellon 100

